Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Continual learning systems attempt to efficiently learn over time without forgetting previously acquired knowledge. In recent years, there has been an explosion of work on continual learning, mainly focused on the class-incremental learning (CIL) setting. In this review, wetake a step back and reconsider the CIL problem. We reexamine the problem definition and describe its unique challenges, contextualize existing solutions by analyzing non-continual approaches, and investigate the implications of various problem configurations. Our goal is to provide an alternative perspective to existing work on CIL and direct attention toward unexplored aspects of the problem.more » « lessFree, publicly-accessible full text available January 28, 2026
-
Matching is one of the simplest approaches for estimating causal effects from observational data. Matching techniques compare the observed outcomes across pairs of individuals with similar covariate values but different treatment statuses in order to estimate causal effects. However, traditional matching techniques are unreliable given high-dimensional covariates due to the infamous curse of dimensionality. To overcome this challenge, we propose a simple, fast, yet highly effective approach to matching using Random Hyperplane Tessellations (RHPT). First, we prove that the RHPT representation is an approximate balancing score – thus maintaining the strong ignorability assumption – and provide empirical evidence for this claim. Second, we report results of extensive experiments showing that matching using RHPT outperforms traditional matching techniques and is competitive with state-of-the-art deep learning methods for causal effect estimation. In addition, RHPT avoids the need for computationally expensive training of deep neural networks.more » « less
-
As an alternative to resource-intensive deep learning approaches to the continual learning problem, we propose a simple, fast algorithm inspired by adaptive resonance theory (ART). To cope with the curse of dimensionality and avoid catastrophic forgetting, we apply incremental principal component analysis (IPCA) to the model’s previously learned weights. Experiments show that this approach approximates the performance achieved using static PCA and is competitive with continual deep learning methods. Our implementation is available on https://github.com/neil-ash/ART-IPCA.more » « less
-
As an alternative to resource-intensive deep learning approaches to the continual learning problem, we propose a simple, fast algorithm inspired by adaptive resonance theory (ART). To cope with the curse of dimensionality and avoid catastrophic forgetting, we apply incremental principal component analysis (IPCA) to the model's previously learned weights. Experiments show that this approach approximates the performance achieved using static PCA and is competitive with continual deep learning methods. Our implementation is available on https://github.com/neil-ash/ART-IPCAmore » « less
An official website of the United States government

Full Text Available